In terrestrial environments, gravity places special demands on the cardiovascular systems of animals. Gravitational pressure can cause blood to pool in the lower regions of the body, making it difficult to circulate blood to critical organs such as the brain. Terrestrial snakes, in particular, exhibit adaptations that aid in circulating blood against the force of gravity.

The problem confronting terrestrial snakes is best illustrated by what happens to sea snakes when removed from their supportive medium. Because the vertical pressure gradients within the blood vessels are counteracted by similar pressure gradients in the surrounding water, the distribution of blood throughout the body of sea snakes remains about the same regardless of their orientation in space, provided they remain in the ocean. When removed from the water and tilted at various angles with the head up, however, blood pressure at their midpoint drops significantly, and at brain level falls to zero. That many terrestrial snakes in similar spatial orientations do not experience this kind of circulatory failure suggests that certain adaptations enable them to regulate blood pressure more effectively in those orientations.

One such adaptation is the closer proximity of the terrestrial snake's heart to its head, which helps to ensure circulation to the brain, regardless of the snake's orientation in space. The heart of sea snakes can be located near the middle of the body, a position that minimizes the work entailed in circulating blood to both extremities. In arboreal snakes, however, which dwell in trees and often assume a vertical posture, the average distance from the heart to the head can be as little as 15 percent of overall body length. Such a location requires that blood circulated to the tail of the snake travel a greater distance back to the heart, a problem solved by another adaptation. When climbing, arboreal snakes often pause momentarily to wiggle their bodies, causing waves of muscle contraction that advance from the lower torso to the head. By compressing the veins and forcing blood forward, these contractions apparently improve the flow of venous blood returning to the heart.



The author suggests that which of the following is a disadvantage that results from the location of a snake's heart in close proximity to its head?


A decrease in the efficiency with which the snake regulates the flow of blood to the brain

A decrease in the number of orientations in space that a snake can assume without loss of blood flow to the brain

A decrease in blood pressure at the snake's midpoint when it is tilted at various angles with its head up

An increase in the tendency of blood to pool at the snake's head when the snake is tilted at various angles with its head down

An increase in the amount of effort required to distribute blood to and from the snake's tail 

考题讲解

此讲解的内容由AI生成,还未经人工审阅,仅供参考。

正确答案是 E。
原因是:文章暗示虽然地面蛇的心脏很接近头部,这有助于保证血液流向大脑,但也会导致血液发送到尾部所需的努力增加,因为心脏必须发送血液更长的距离。

展开显示

登录注册 后可以参加讨论

快来第一个发言吧
DaQuan-RC