If n is a positive integer and r is the remainder when (n-1)(n+1) is divided by 24, what is the value of r?
(1) 2 is not a factor of n.
(2) 3 is not a factor of n.
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
1、用数字试
2、(1)n是奇数,则(n-1),(n+1)两个都是偶数,除0和2外,(0可以看成包含无穷个任意数,因为0除以任意数都是0,没有余数),两个相邻的偶数至少包含3个2,因为两个相邻的偶数相当于4个连续的整数,4个连续的整数中必定有一个能被4整除,,所以2个连续的整数中必定有一个能被4整除,即包含2个2,另一个则因为是整数,至少包含一个2.
(2)n不是3的因数,则(n-1),(n+1)中必定有一个能被3整除。因为3个连续的整数中必有一个能被3整除。\
(1)+(2),推出(n-1)*(n+1)能被2*2*2*3整除,即能被24整除。
两个连续的偶数相乘必为8的倍数,三个连续的自然数相乘必为6的倍数
总结:n个连续的整数中必有一个能被n整除。
试数法
两个连续的偶数相乘必为8的倍数,三个连续的自然数相乘必为6的倍数
1、用数字试
2、(1)n是奇数,则(n-1),(n+1)两个都是偶数,除0和2外,(0可以看成包含无穷个任意数,因为0除以任意数都是0,没有余数),两个相邻的偶数至少包含3个2,因为两个相邻的偶数相当于4个连续的整数,4个连续的整数中必定有一个能被4整除,,所以2个连续的整数中必定有一个能被4整除,即包含2个2,另一个则因为是整数,至少包含一个2.
(2)n不是3的因数,则(n-1),(n+1)中必定有一个能被3整除。因为3个连续的整数中必有一个能被3整除。
(1)+(2),推出(n-1)*(n+1)能被2*2*2*3整除,即能被24整除。
总结:n个连续的整数中必有一个能被n整除。
用数字试
- if n is not divisible by 2, then n is odd, so both (n - 1) and (n + 1) are even. so the product (n - 1)(n + 1) contains one multiple of 2 and one multiple of 4, so it contains at least 2 x 2 x 2 = three 2's in its prime factorization.
- if n is not divisible by 3, then exactly one of (n - 1) and (n + 1) is divisible by 3contains a 3 in its prime factorization.
- thus, the overall prime factorization of (n - 1)(n + 1) contains three 2's and a 3.
https://www.manhattanprep.com/gmat/forums/if-n-is-a-positive-integer-and-r-is-the-remainder-when-n-1-t1968.html