If a committee of 3 people is to be selected from among 5 married couples so that the committee does not include two people who are married to each other, how many such committees are possible?
total no for selecting 3 out of 10=10c3=120
no. of ways in which no two married people included= tot- 2 married couple included
2 married couple can be included in 5c1,no. of ways selecting a couple, * 8c1, no. of ways selecting the third person,=5 * 8=40
方法一:所有组合减去有couple的组合=C(10,3)-C(5,1)*C(8,1)=80. 有couple的组合=先从5对couple选一对,已经有两个人了,再从剩下8个人里选一个。
方法二:先从5对夫妻里面选3对,再从这3对夫妻里每对各自选一个人出来。C(5,3)*C(2,1)*C(2,1)*C(2,1)=80
赞!
登录 或 注册 后可以参加讨论
可不可以用这种思路?抽的第一个人可以从10个人里面选,抽的第二个人本应该从剩下的9个人里面选,但是其中有一个是夫妻,所以只能从剩下8(9-1=8)里面选,第三个人只能从剩下6(7-1=6)个人里面选,所以一共有10*8*6种排列方式,但因为这是组合问题,所以要除以不同选择顺序的总数,即3*2*1,所以一共有(10*8*6)/3! = 10*8=80种
相当于是运用了乘法原理来做的
cool,我跟你一个方法,看到你的评论我放心了很多
登录 或 注册 后可以参加讨论
先选出三对couple (C5,3),然后在选出的三对couple中本别选出3个人 C2,1*C2,1*C2,1。 以上两个过程同时发生 10*8=80
2^(3)*C(5,3)=80
关于排除couple:草稿纸上写着5*8,
要想选couple,前两个人(即couple)有5种选法,第三个人在剩下的八个人里面选一个,所以是40.
2 married couple can be included in 5c1,no. of ways selecting a couple, * 8c1, no. of ways selecting the third person,=5 * 8=40
2 married couple can be included in 5c1,no. of ways selecting a couple, * 8c1, no. of ways selecting the third person,=5 * 8=40
从十个人里任意选三个人的集合用combination公式所以就是:10C3 = 120
但需要再减去有夫妻的组合,有5x8=40种可能
所以120-40=80
C10,3 - 10*C4, 3; 先看一共几种选法,减去有couple的可能性
5*4*4=80
从十个人里任意选三个人的集合用combination公式所以就是:10C3 = 120
但需要再减去有夫妻的组合,有5x8=40种可能
所以120-40=80
全部選項:10C3 = 120
有至少一對夫妻: 5C1 x 8C1 = 40
120-40=80
total no for selecting 3 out of 10=10c3=120
no. of ways in which no two married people included= tot- 2 married couple included
2 married couple can be included in 5c1,no. of ways selecting a couple, * 8c1, no. of ways selecting the third person,=5 * 8=40
3个人分别来自不同的夫妻,所以可以先选出3对夫妻,即有10种组合。在选好3对夫妻后,每对夫妻中抽出一个,即有23=8种组合,所以最终的可能就是8*10=80种组合