In the figure shown, quadrilateral ABCD is inscribed in a circle of radius 5. What is the perimeter of quadrilateral ABCD ?
(1) The length of AB is 6 and the length of CD is 8.
(2) AC is a diameter of the circle.
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
题目分析:
(1) 仅有条件1中的AB和CD长,无法求得AD和BC长,也就无法求得四边形ABCD的周长。
(2) AC是直径,所以有AC=2*5=10,仅有AC长也无法计算周长。
结合条件1和条件2,由定理“直径所对的圆周角为直角”可知,角ABC和角ADC均为直角,由勾股定理得~$AD=\sqrt{AC^2-CD^2}$~,即~$AD=\sqrt{10^2-8^2}$~=4,~$BC=\sqrt{AC^2-AB^2}$~,即~$BC=\sqrt{10^2-6^2}=8$~,所以四边形ABCD的周长为AB+BC+CD+AD=6+8+4+8=26。
因此,本题答案为(C),两个条件结合起来才能解题,任何单独一个均不行。
圆周角顶点在圆周上,直径所对的圆周角为直角, 圆周角的度数等于它所对弧上的圆心角度数的一半
直径所对的圆周角为直角-------------------------------
“直径所对的圆周角为直角
直径所对的圆周角为直角
“直径所对的圆周角为直角
常量: constant 变量: variable
tick marks刻度线 line segment线段 number axis数轴 plane平面 coordinate坐标
diameter直径 radius半径 inscribed内接 circumscribed外接 quadrilateral任意四边形 polygon多边形 regular polygon正多边形
statement 2 --以圆的直径为一边的圆内切三角形都是直角三角形。
求图
請完整題目