If the average (arithmetic mean) of n consecutive odd integers is 10, what is the least of the integers?
(1) The range of the n integers is 14.
(2) The greatest of the n integers is 17.
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
题目分析:
(1) 设最小值为k,如果n的范围为14,序列中的所有奇数为k、k+2、k+4、…、k+14共8个数,又因为平均值为10,所以(k+k+2+k+4+…+k+14)/8=10,解得k=3,题目得解。
(2) 序列中的最大值为17,题目要求序列平均值为10,即和为80,因为1~17中所有奇数的和为81,不满足要求,2~17中所有奇数的和为80,满足要求。其余均不满足要求。所以序列最小值为3。题目得解。
因此,本题答案为(D),任何一个条件说明均能解题。
他没说不可以是负数啊??????
Mark, The range of the n integers is 14 指的是n个数之间的相差范围是14,7个间隔,8个连续的奇数
The range of the n integers is 14. 对这句话的理解很关键,就是说n个数之间相差的是范围是14
如果把这N个连续奇数看做等差序列,则可判断n=8
解释是错的。 17+X/2=10
设 a'k=2k+1, 则a'(k+n-1)=2(k+n)-1, Sn=n(2k+n), average=2k+n, range=a'(k+n-1) - a'k= 2n-2 . 可以推出最小的a'k与average之间相差n-1, 最大的a'(k+n-1)也与average相差n-1, 即range的一半。
已知average,求最小的a'k; (1)中给出range可以推出: a'k=average-1/2(range)=10-7=3
(2)中给出最大值可以推出:1/2range=a'(k+n-1)-average=17-10=7 , a'k=average-1/2(range)=10-7=3
规律:连续的奇数,最大值和最小值都与平均值相差range的一半。
range 14,又是连续奇数,所以最大和最小都与mean间隔7. 一个加7,一个减7. 10 分别加减7, 17和3. 最小就是3.