If a and b are positive integers, is~$\sqrt[3]{ab}$~ ab an integer?
(1)~$\sqrt{a}$~ is an integer.
(2)~$ b =\sqrt{a}$~
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
题目分析:
(1)条件1只给出了~$\sqrt{a}$~为整数,不知道b的值,无法判断~$\sqrt[3]{ab}$~是否为整数。例如,a=4,b=1,~$\sqrt{a}=2$~是整数,符合条件1,此时~$\sqrt[3]{ab}$~不是整数。又如,a=9,b=3,~$\sqrt{a}=3$~是整数,符合条件1,此时~$\sqrt[3]{ab}$~是整数。所以,条件1无法判断~$\sqrt[3]{ab}$~是否为整数。
(2)因为~$b=\sqrt{a}$~,有~$b^2=a$~,代入题目中的式子得~$\sqrt[3]{b^3}=b$~,b是整数,所以符合条件2则~$\sqrt[3]{ab}$~为整数,题目得解。
因此,本题答案为(B),仅条件2可以解题,条件1不行。
我把a带入了,解出为根号a,由于b是整数,所以根号a也是整数
登录 或 注册 后可以参加讨论