Running at their respective constant rates, Machine X takes 2 days longer to produce w widgets than Machine Y. At these rates, if the two machines together produce ~$5 \over 4$~ w widgets in 3 days, how many days would it take Machine X alone to produce 2W widgets?
4
6
8
10
12
x= y+2
(1/x+1/y)*3=5/4
列方程太烦了,直接套答案进x/1+(x-2)/1=5/12比较快。然而我算出来x=6后直接选了6错掉了T_T
列出方程即可得出X的日产能是W/6,如需生产2W,则需12天
3[(w/t)+(w/(t-2)] = 5/4w
解方程没解出来
设定XY时,两个方程要统一概念。不能X又代表时间又代表效率。
这一题运算量还是有点大,一分半钟可能还够呛,中间还需要十字相乘5Y^2-14Y-24=0,因式分解为 (5Y+6)(Y-4)=0, Y=4, X=6,所以X功率为W/6,所以2W再除以W/6=12.
5x^2-34x+24=0
用十字相乘法可以求得解
结果不好算
设x用了x天做w个,y用了x-2天,则x一天做w\x,y一天w\(x-2)
3天x,y一起做了3(w\x+w\(x-2))=5\4w
解方程得到(5x-4)(x-6)=0
x1=0.8 x2=6
天数是整数,所以答案是6
机器x生产2w就需要6*2=12