If x2 - 2x - 15 = 0 and x > 0, which of the following must be equal to 0 ?
I. x2 - 6x + 9
II. x2 - 7x + 10
III. x2 - 10x + 25
I only
II only
III only
II and III only
I, II, and III
题目分析:
~$x^2$~ − 2x − 15 = 0 解得x=5或者x=-3,又因为x>0,所以x=5;
代入三个代数式:
I. ~$x^2$~− 6x + 9=25-30+9 =4 非0;
II. ~$x^2$~− 7x + 10=25-35+10=0.
III. ~$x^2$~− 10x + 25=25-50+25=0.
或者另三个一元二次代数式为0,求三个方程的解,看看有没有解为5.其中一个解为5就是所求。
综上:答案就是D.