If a square region has area n, what is the length of the diagonal of the square in terms of n ?
~$\sqrt{2n}$~
~$\sqrt{n}$~
~$2\sqrt{n}$~
2n
2n2
题目分析:
正方形的面积 n,先求出正方形的边长 l, l*l=n,则 l= ~$\sqrt{n}$~;正方形的对角线和两条边构成一个等腰直角三角形,对角线 t, ~$t^2$~=~$\sqrt{n}^2+\sqrt{n}^2$~ =2n, t= 2n;
综上:答案就是 A。
diagonal对角线
square正方形