A certain drive-in movie theater has a total of 17 rows of parking spaces. There are 20 parking spaces in the first row and 21 parking spaces in the second row. In each subsequent row there are 2 more parking spaces than in the previous row. What is the total number of parking spaces in the movie theater?
412
544
596
632
692
题目分析:
等差数列求和,从第二排开始到第 17 排形成了一个公差为 2 的等差数列, ~$S=n(a_1+a_n)=na_1 + 1/2n n − 1 d$~;
二排到 17 排的和 n=17-2+1=16,d=2, ~$a_1$~=21; S=16*21+1/2*16*15*2=576;
再加上第一排,576+20=596.
综上:答案就是 C
注意陷阱,是16个数的等差数列,最后sum要加上第一列
通项公式为:an=a1+(n-1)*d。首项a1=21,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。
从第二排开始到第 17 排形成了一个公差d为 2 的等差数列, 项数为16; 设第二排为a1, Sn=(a1+a16)*16/2=8*(a1+a16)
a16=a1+ 2*(16-1)=21+30=51, 带入求和Sn=(21+51)*8=576
最后加上row 1的20是596
第一排20座,第二排21座,第二排以后每排增2座,an=a1+(n-1)d,a1=21,n=16,d=2,an=51,sn=(a1+an)n/2,s16=576,所以一共s16+20个座=596