A candle company determines that, for a certain specialty candle, the supply function is p = m1x + b1 and the demand function is p = m2x + b2, where p is the price of each candle, x is the number of candles supplied or demanded, and m1, m2, b1, and b1 are constants. At what value of x do the graphs of the supply function and demand function intersect?
(1) m1 = –m2 = 0.005
(2) b2 – b1 = 6
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
题目分析:
题目要求得供应函数和需求函数相交的点,因此,联立两个函数,~$m_1x+b_1=m_2x+b_2$~,解得~$x=(b_2-b_1)/(m_1-m_2)$~,条件1只有~$m_1m_2$~的值,条件2只有~$b_2-b_1$~的值,单独均不能解题。
结合条件1和条件2,x=6/(0.005+0.005)=600。
因此,本题答案为(C),两个条件结合起来才能解题,任何单独一个均不行。
靠看错了 m1=-m2
intersect
求两条直线交点的X坐标,
联立方程,得出m1x + b1=m2x + b2,x(m1-m2)=b2-b1
所以要把两个选项合起来才能求出X
intercept 意味着等式m1x + b1=m2x + b2,m1x-m2x= b2-b1, x(m1-m2)=b2-b1.所以要1+2合并才能得出。
m1x-m2x=b2-b1