What is the sum of the odd integers from 35 to 85, inclusive?
1,560
1,500
1,240
1,120
1,100
题目分析:
35 到 85 的奇数,构成一个等差数列,方差是 2. 奇数的个数为(85-35)/2+1=26.
等差数列的和 S=n*(a(1)+a(n))/2= ~$\frac{26*(35+85)}{2}$~ =1560;
综上:答案就是 A。
展开显示
登录 或 注册 后可以参加讨论
等差数列来计算奇偶数求和非常的方便!!!笨笨的我是硬算的!
記得要+1 因為 35, 85都是odd, 所以需要+1
以后遇到类似的题目,要怎么判断个数是多少呢? 本题是奇数的个数为(85-35)/2+1=26.
mark 项数: n=(an-a1)/d[公差]+1 等差数列求和: Sn=(a1+an)*n/2
等差数列求和: Sn=(a1+an)*n/2 项数: n=(an-a1)/d[公差]+1
例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。
等差数列,等加数列,公式
the number of odd numbers in total: (85-35)/2+1=26 前n项求和公式:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2 Sn=26*35+26*(26-1)*2/2或26*(35+85)/2=1560
consecutive integers FirstNumber+LastNumber2FirstNumber+LastNumber2 divided by2 as we need to find out the number of odd numbers.(85-35)+1 is total number which includes even and odd
超时
等差数列来计算奇偶数求和非常的方便!!!笨笨的我是硬算的!
記得要+1
因為 35, 85都是odd, 所以需要+1
以后遇到类似的题目,要怎么判断个数是多少呢? 本题是奇数的个数为(85-35)/2+1=26.
mark 项数: n=(an-a1)/d[公差]+1 等差数列求和: Sn=(a1+an)*n/2
等差数列求和: Sn=(a1+an)*n/2
项数: n=(an-a1)/d[公差]+1
例如:1,3,5,7,9……2n-1。通项公式为:an=a1+(n-1)*d。首项a1=1,公差d=2。前n项和公式为:Sn=a1*n+[n*(n-1)*d]/2或Sn=[n*(a1+an)]/2。注意:以上n均属于正整数。
等差数列,等加数列,公式
the number of odd numbers in total: (85-35)/2+1=26
前n项求和公式:Sn=n*a1+n(n-1)d/2或Sn=n(a1+an)/2
Sn=26*35+26*(26-1)*2/2或26*(35+85)/2=1560
consecutive integers
FirstNumber+LastNumber2FirstNumber+LastNumber2
divided by2 as we need to find out the number of odd numbers.(85-35)+1 is total number which includes even and odd
超时