The positive integer k has exactly two positive prime factors, 3 and 7. If k has a total of 6 positive factors, including 1 and k, what is the value of k ?
(1) 32 is a factor of k.
(2) 72 is not a factor of k.
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
五个因子确定:1,3,7,21,k,剩下一个要么是7*7,要么是3*3
n拥有1、k、3、7、21(3*7),这五个因数。这是确定了的条件。
因为n只有6个因数,所以第六个因数要么是3^2,要么是7^2,
因为题目所给k只有两个质因子,3和7,所以不可能引入其它质因子,只可以在3或7的n次方上做文章,又因为题目所给,k只有6个因子,所以限定为3或7的平方才符合题意。因此(1)和(2)皆满足条件。
背景知识
对于一个数n,假设他的质数因子是a, b, c,且n=(a^x)*(b^y)*(c^z)
则n的因子数为f=(x+1)(y+1)(z+1)
比如n=120, n=(2^3)*(3^1)*(5^1)
所以120的factors数为4*2*2=16个
解题
题目说质因子只有3和7
设k=(3^x)(7^y)
则(x+1)(y+1)=6 所以x、y=1或2
所以两个条件都可以得出
D
简便解法:
由题可确定:n拥有1、k、3、7、21(3*7),这五个因数。这是确定了的条件。
因为n只有6个因数,所以第六个因数要么是3^2,要么是7^2,所以选D。
对于一个数n,假设他的质数因子是a, b, c,且n=(a^x)*(b^y)*(c^z)
则n的因子数为f=(x+1)(y+1)(z+1)
n只有6个因数
The positive integer k has exactly two positive prime factors, 3 and 7: k=(3^x)*(7^y)
If k has a total of 6 positive factors, including 1 and k: (x+1)(y+1)=6 #as x and/or y can be "zero"
n拥有1、k、3、7、21(3*7),这五个因数。这是确定了的条件。
因为n只有6个因数,所以第六个因数要么是3^2,要么是7^2,
K has exactly two positive prime factors & has a total of 6 positive factors,意思是k有2个最简质因子 & 总共有6个质因子。
搞懂第一句和第二句的关系,第一句是限定了K只有两种因子,第二句是说k有6个因子时,求k的值。
设K=3^m*7^n
则K的因子数为 (m+1)(n+1)=6
m=1,n=2
或
m=2,n=1
条件1已知3^2是其中一个因子,则,m=2,n=1.K可求
条件2已知7^2不是其中一个因子,那么n不等于2,则m=2, n=1成立