Each of the numbers w, x, y, and z is equal to either 0 or 1. What is the value of w + x + y + z ?
(1) ~$\frac{w}{2}+\frac{x}{4}+\frac{y}{8}+\frac{z}{16}=\frac{11}{16}$~
(2) ~$\frac{w}{3}+\frac{x}{9}+\frac{y}{27}+\frac{z}{81}=\frac{31}{81}$~
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
只能选0或1,所以有了算式一定能算出结果
此题错选C,看来如果只有0或1,那就把其中0或1其中一个分两次带入wxyz任何一个,就知道是否需要另一个等式了。又被骗了。
这道题按下next键的瞬间才想到应该选择都对
题意!想当然 是 either 0 or 1 不是 neither 0 nor 1
只能选1/0 读题又不仔细了
不管1还是2 只有一种情况可以成立等式。D
读题不仔细, w, x, y, and z is equal to either 0 or 1是说这四个字母可能等于0或者1.。。
四个数分别等于0或者1,把分母转换成一样的后得出等式,1、2选项都只有一种特定情况成立。