Let n and k be positive integers with k ≤ n. From an n × n array of dots, a k × k array of dots is selected.The figure above shows two examples where the selected k × k array is enclosed in a square. How many pairs (n, k) are possible so that exactly 48 of the dots in the n × n array are NOT in the selected k × k array?
1
2
3
4
5
【引用】考的是因式分解+因子分解+奇偶性
求不在范围内的点=n^2-k^2=(n+k)*(n-k)
(n - k) * (n + k) = 48
计算48可以分解成多少个2数相乘的组合,48 因数分解:(2,2,2,2,3),可以分解成多少个两数相乘
(2,24), (4,12), (8,6), (16,3)
小的数=n-k,大的数=n+k,因为n-k+n+k=2n,n是整数,所以两数的和只能是偶数,去掉(16,3) 的组合,剩下3组。
登录 或 注册 后可以参加讨论