Caffeine, the stimulant in coffee, has been called "the most widely used psychoactive substance on Earth. "Snyder, Daly, and Bruns have recently proposed that caffeine affects brain of by countering the activity in the human brain of a naturally occurring chemical called adenosine. Adenosine normally depresses neuron firing in many areas of the brain. It apparently does this by inhibiting the release of neurotransmitters, chemicals that carry nerve impulses from one neuron to the next.

Like many other agents that affect neuron firing, adenosine must first bind to specific receptors on neuronal membranes. There are at least two classes of these receptors, which have been designated A1 and A2. Snyder et a1. propose that caffeine, which is structurally similar to adenosine, is able to bind to both types of receptors, which prevents adenosine from attaching there and allows the neurons to fire more readily than they otherwise would.

For many years, caffeine's effects have been attributed to its inhibition of the production of phosphodiesterase, an enzyme that breaks down the chemical called cyclic AMR. A number of neurotransmitters exert their effects by first increasing cyclic AM P concentrations in target neurons. Therefore, prolonged periods at the elevated concentrations, as might be brought about by a phosphodiesterase inhibitor, could lead to a greater amount of neuron firing and, consequently, to behavioral stimulation. But Snyder et aI point out that the caffeine concentrations needed to inhibit the production of phosphodiesterase in the brain are much higher than those that produce stimulation. Moreover, other compounds that block phosphodiesterase's activity are not stimulants.

To buttress their case that caffeine acts instead by preventing adenosine binding, Snyder et al compared the stimulatory effects of a series of caffeine derivatives with their ability to dislodge adenosine from its receptors in the brains of mice. "In general,"they reported "the ability of the compounds to compete at the receptors correlates with their ability to stimulate locomotion in the mouse i. e., the higher their capacity to bind at the receptors, the higher their ability to stimulate locomotion." Theophylline, a close structural relative of the most effective compounds in both regards.

There were some apparent exceptions to the general correlation observed between adenosine-receptor binding and stimulation. One of these was a compound called 3-isobutyl-1-methylxanthine (IBMX), which bound very well but actually depressed mouse locomotion. Snyder et al suggest that this is not a major stumbling block to their hypothesis. The problem is that the compound has mixed effects in the brain, a not unusual occurrence with psychoactive drugs. Even Caffeine, which is generally known only for its stimulatory effects, displays this property, depressing mouse locomotion at very low concentrations and stimulating it at higher ones.


Snyder et al. suggest that caffeine's ability to bind to A1 and A2 receptors can be at least partially attributed to which of the following?


The chemical relationship between caffeine and phosphodiesterase

The structural relationship between caffeine and adenosine

The structural similarity between caffeine and neurotransmitters

The ability of caffeine to stimulate behavior

The natural occurrence of caffeine and adenosine in the brain

考题讲解

此讲解的内容由AI生成,还未经人工审阅,仅供参考。

正确答案是 B,Snyder et al 建议咖啡因能够结合 A1 和 A2 受体可以至少部分归因于咖啡因与腺苷之间的结构关系。文章中指出,Adenosine 通常会降低大脑中多个区域的神经元激发,而咖啡因有结构上的相似性与它相似,并可以结合到这些受体上,从而阻止 Adenosine 的结合,使神经元可以更容易地被激发。

展开显示

登录注册 后可以参加讨论

OG2016V-RC