How many integers n are there such that r < n < s ?
(1) s - r = 5
(2) r and s are not integers.
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
题目分析:
(1) 如果s=5,r=0,满足条件1,满足0 < n < 5的整数有1、2、3、4共4个。如果s=5.1,r=0.1,也满足条件1,0.1 < n < 5.1的整数有1、2、3、4、5共4个,所以条件1无法确定n的个数。
(2) 条件2给定r和s不是整数,仅此条件无法确定n的个数。
结合条件1和条件2,根据条件2可以排除条件1中r和s是整数的情况,只剩r和s为小数的情况,可以确定r < n < s的n有5个,题目得解。
因此,本题答案为(C),两个条件结合起来才能解题,任何单独一个均不行。
(1)不充分,因为若s,r为整数时,则根据s-r=5可推知有4个正整数n满足r<n<s,若s,r为小数时,则有5个正整数n满足r<n<s;仅仅知道r和s不是整数也不能充分地回答上述问题;(1)+(2)充分,因为根据此条件可以得到有且仅有5个正整数满足r<n<s
登录 或 注册 后可以参加讨论