If x, y, and z are integers and xy + z is an odd integer, is x an even integer?
(1) xy + xz is an even integer.
(2) y + xz is an odd integer.
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
CD上的一个思路:因为观察到xy+z和xy+xz都有个xy,所以让两者作差,得到xz-x即x(z-1)为奇数(因为偶-奇=奇),而两者乘积为奇数,x和z-1均必为奇数,得到x一定不是偶数。所以(1)单独成立。
是个好idea 但是xy+z和xy+xz做差结果是xz-z= z(x-1)哦。如此说来我有个疑问, z(x-1)必是奇数,其中一奇一偶, 但当z为奇数时,x-1为偶, 那么x就是奇数了呀?如何解释?
哦哦 我说错啦 z(x-1)必为奇数 所以z 和x-1是奇数 所以x必然是偶数!
登录 或 注册 后可以参加讨论