The integers m and p are such that 2 < m < p and m is not a factor of p. If r is the remainder when p is divided by m, is r > 1 ?
(1) The greatest common factor of m and p is 2.
(2) The least common multiple of m and p is 30.
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
m不是p的一个因数,那么p/m的余数一定大于等于1. 题目问是否大于,只要不等于1,那肯定就是大于1的。
1)最大公约数是2,说明m ,p都可以被2 整除,m,p都是偶数,p/m 的余数不可能等于1,因为 被除数p=除数m乘以商再加上余数,m是偶数,m乘以商也是偶数,如果余数是1的话,加上1,得出的被除数p就是奇数了,矛盾。所以余数不是1. (1)充分
2)最小公倍数30=3*2*5,m,p的可能取值有:3,10;2,15;5,6,其中3,10的余数=1,不充分 回
做这些题型的时候,不是看给出的条件,对于判断有没有帮助吗?如果条件2)所有可能(这里是假设的情况,假设,假设),条件2的各种情况都指向 r=1,即可以得出 r is not more than 1. 是不是也是正确的答案?
登录 或 注册 后可以参加讨论