The integers m and p are such that 2 < m < p and m is not a factor of p. If r is the remainder when p is divided by m, is r > 1 ?
(1) The greatest common factor of m and p is 2.
(2) The least common multiple of m and p is 30.
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
(1算余数的时候不可以约去公倍数。余数=约去公倍数后的余数*被约掉的公倍数。
设p=2a,m=2b,a,b都是整数,且a>b.p/m=2a/2b,因为a/b互质,余数最小是1,2a/2b的余数=2*(a/b的余数),最小是2。
余数运算定理:
对于同一个除数,两个数之和(或差)与它们的余数之和(或差)同余。
对于同一个除数,两个数的乘积与它们余数的乘积同余。
(5+7)’=5’+7’; (7-5)’=7’-5’; (7*5)’=7’*5’
两个数相除等于一个余数,两数同乘k,余数同乘k。
(5/3)’=2, (10/6)=2*(5/3)’=4
对于同一个除数,如果有两个整数同余,那么它们的差就一定能被这个除数整除。
(5/3)’=(8/3)’,则8-5可以整除3.
对于同一个除数,如果两个数同余,那么他们的乘方仍然同余。
(5/3)’=(8/3)’=2, (5*5/3)’=(8*8/3)’=1
什么是同余?
登录 或 注册 后可以参加讨论