The integers m and p are such that 2 < m < p and m is not a factor of p. If r is the remainder when p is divided by m, is r > 1 ?
(1) The greatest common factor of m and p is 2.
(2) The least common multiple of m and p is 30.
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
条件1:说明M和P是两个连续的偶数,余数肯定大于1,充分。条件2:如果M和P是3和10,余数为1,如果是6和10,余数是4,不充分。
条件1:你的解析中说:m和p是两个连续的偶数,我觉得这个说法不对,举反例:如果m是4,p是10,满足所有条件,但是就不是两个连续的偶数。所以,我不清楚关于条件1的判断该怎么解析?
4和10也可以啊 我忽略了 但是答案都是一样的
我认可你的答案是对的,但是这样解析不对,那么在做这道考题时,该如何入手呢?要不然这题做不出来啊
设p=2a. m=2b
p/m 余数最小的时候是a和b相差最少的时候,随便设两个相邻整数,得出最小余数是2
登录 或 注册 后可以参加讨论