If x and y are positive integers such that x = 8y + 12, what is the greatest common divisor of x and y ?
(1) x = 12u, where u is an integer.
(2) y = 12z, where z is an integer.
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
x=12u-->x含有两个因数(12,u);y=12z-->y含有两个因数(12,z),x,y的最大公因数取决于u和z之间有没有相同的因数-->求u和z的关系
将u和z代入x = 8y + 1-->u=8z+1,u/z=8余1,凡是相除余数为1的,两个数互质,所以u和z互质,(12,u)和(12,z)的最大公倍数是12.
证明“凡是相除余数为1的,两个数互质”:
设两个数A,B, 相除余数为1则A=kB+1。设两个数的公因数为m,A=am, B=bm, m,a,b都得是整数。代入A=kB+1得:am=k*bm+1,m=1/(a-kb), 因为m,a,b都是整数,所以m只能等于1,a-kb只能等于1,即A, B的公约数只能是1,两个数互质。
登录 或 注册 后可以参加讨论