If x and y are positive integers such that x = 8y + 12, what is the greatest common divisor of x and y ?
(1) x = 12u, where u is an integer.
(2) y = 12z, where z is an integer.
Statement (1) ALONE is sufficient, but statement (2) alone is not sufficient.
Statement (2) ALONE is sufficient, but statement (1) alone is not sufficient.
BOTH statements TOGETHER are sufficient, but NEITHER statement ALONE is sufficient.
EACH statement ALONE is sufficient.
Statements (1) and (2) TOGETHER are NOT sufficient.
(1)x=12u,y=3*(u-1)/2,因为y是正整数,u是整数,那么3(u-1)一定能被2整除,(u-1)是偶数且(u-1)不能=0,所以u一定是大于等于3的奇数。
当u=3时,XY最大公约数为3;u=5时最大公约数为2*3=6;u=9时最大公约数为2*2*3=12。无法确定是哪个
(2)y=12z,x=12(8z+1),因为Y是正整数,所以z≥1。当z=1时,12是最大公约数,z>1时,8z+1不是z的倍数,所以12依旧是最大公约数。
登录 或 注册 后可以参加讨论