Prior to 1965 geologists assumed that the two giant rock plates meeting at the San Andreas Fault generate heat through friction as they grind past each other, but in 1965 Henyey found that temperatures in drill holes near the fault were not as elevated as had been expected. Some geologists wondered whether the absence of friction-generated heat could be explained by the kinds of rock composing the fault. Geologists' pre-1965 assumptions concerning heat generated in the fault were based on calculations about common varieties of rocks, such as limestone and granite; but "weaker" materials, such as clays, had already been identified in samples retrieved from the fault zone. Under normal conditions, rocks composed of clay produce far less friction than do other rock types.

In 1992 Byerlee tested whether these materials would produce friction 10 to 15 kilometers below the Earth's surface. Byerlee found that when clay samples were subjected to the thousands of atmospheres of pressure they would encounter deep inside the Earth, they produced as much friction as was produced by other rock types. The harder rocks push against each other, the hotter they become; in other words, pressure itself, not only the rocks' properties, affects frictional heating. Geologists therefore wondered whether the friction between the plates was being reduced by pockets of pressurized water within the fault that push the plates away from each other.


The passage is primarily concerned with


evaluating a method used to test a particular scientific hypothesis

discussing explanations for an unexpected scientific finding

examining the assumptions underlying a particular experiment

questioning the validity of a scientific finding

presenting evidence to support a recent scientific hypothesis

考题讲解

此讲解的内容由AI生成,还未经人工审阅,仅供参考。


正确答案是 B。 这篇文章主要是讨论1965 年亨尼发现的在圣安德烈亚断层区钻孔中温度不如预期的惊人发现,以及这一发现造成的一些科学家的怀疑。文章讨论了科学家们用来解释这一发现的各种理论,例如空气和泥浆等软物质可能在断层中减少摩擦产生的热量。因此,正确的答案是B

展开显示

登录注册 后可以参加讨论

Prep2008E1-RC